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Abstract. Dynamical thermostatting constitutes a procedure for computing thermodynamical mean values
of classical dynamical systems that is of interest both from the practical and from the conceptual points
of view. Here we extend and unify previous partial results, showing that the dynamical thermostatting ap-
proach can be implemented in order to simulate a wide family of statistical ensembles of general dynamical
systems with a vanishing divergence and admitting an integral of motion. As a particular illustration, the
thermostatting procedure is applied to power law-like maximum entropy ensembles.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.20.Gg
Classical ensemble theory

1 Introduction

Dynamical thermostats [1–8] (also referred to as determin-
istic thermostats [9]) constitute useful tools for computing
thermodynamic properties of classical Hamiltonian sys-
tems. The gist of the dynamical thermostatting method
consists of extending the original dynamical system, the
new degrees of freedom representing a heat bath, in such
a way that the time mean values of the original phase
space variables coincide with the desired ensemble aver-
ages. The main ideas of this method were originally ad-
vanced by Nosé [1,2] and Hoover [3,4]. An interesting and
versatile extension of this approach was later developed by
Kusnezov, Bulgac and Bauer (KBB) [5,6]. By recourse to
an appropriate choice of the coupling with the heat bath
variables, it is possible to obtain a highly ergodic dynam-
ics leading to the alluded equivalence between time and
ensemble averages. The KBB method provides a power-
ful alternative to the Monte Carlo method for comput-
ing thermal properties of classical systems. In a previous
work Plastino and Anteneodo [7] adapted this method to
simulate generalized non-extensive (power-law) canonical
ensembles of classical Hamiltonian systems [10].

There are many interesting dynamical systems in
physics, theoretical biology, and other areas, that are not
Hamiltonian, or that have their most natural description
in terms of a noncanonical set of variables. Therefore, it
is of great importance to extend the methods of Statisti-
cal Mechanics to nonhamiltonian systems [11]. Plastino
et al. [8] have considered the thermostatting approach

a e-mail: arplastino@maple.up.ac.za

to standard, exponential, canonical ensembles within the
context of general dynamical systems exhibiting a phase
space flow of vanishing divergence. The aim of the present
work is to unify and generalize these previous results, im-
plementing the Dynamical Thermostatting procedure for
a wide family of statistical ensembles of dynamical sys-
tems of zero divergence endowed with an integration con-
stant C. The alluded statistical ensembles can be obtained
from a maximum entropy principle based upon an ap-
propriate entropic functional [12]. The thermo-statistical
formalisms associated with these maximum entropy pre-
scriptions have arose a considerable amount of interest
in recent years [13–21]. In particular, power-law statisti-
cal ensembles, and their associated thermo-statistics, are
nowadays the focus of intensive research efforts because
they are very useful in order to describe many systems and
processes in physics, biology, economics, and other related
fields [19–21]. Parameterizing the power-law distributions
in terms of Tsallis q-distributions (that is, distributions
maximizing Tsallis’ non-extensive information measure)
it is possible to recover the standard exponential canoni-
cal distribution in the limit q → 1. As an example of the
general thermostatting method that is advanced here, we
implement a thermostatting scheme for systems of vanish-
ing divergence described by a non-extensive (power-law)
thermostatistics. Numerical illustrations are provided for
two specific cases: a Lotka-Volterra [22,23] system with
three species, and a Nambu system.

This paper is organized as follows. The formalism
advanced here for the thermostatting approach to gen-
eral statistical ensembles of dynamical systems of zero
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divergence is analyzed in Section 2. In Section 3 it is shown
how the general formalism reduces to the original KBB
one in the case of Gibbs’ ensembles associated with Hamil-
tonian systems. In Section 4 the general approach is ap-
plied to power law-like ensembles parameterized as Tsallis’
distributions. Numerical illustrations are discussed in Sec-
tion 5. Finally, some conclusions are drawn in Section 6.

2 Dynamical thermostats for general
statistical ensembles

The KBB Dynamical Thermostatting approach, as origi-
nally formulated in [5], is a dynamical procedure for the
evaluation of thermal mean values corresponding to the
canonical ensemble associated to a dynamical system with
Hamiltonian H(x,p). The main idea of this method con-
sists in enlarging the system by incorporating two new dy-
namical variables, ε and η , representing the heat bath.
In this Section we are going to generalize the thermostat-
ting procedure in order to treat general statistical ensem-
bles of dynamical systems with vanishing divergence ad-
mitting an integral of motion C. Let us consider an au-
tonomous dynamical system

ż = w (z), z,w ∈ RN, (1)

where the vector z represents a point in the system’s phase
space. It is going to prove convenient to separate the phase
space variables in two-subsets,

z = (x,y), (2)

with

x ∈ RN1 ,
y ∈ RN2 , N1 + N2 = N. (3)

The dynamical equations of motion can now be written as

ẋ = u(x,y),
ẏ = v(x,y), (4)

where w = (u,v). As already mentioned, in [8] Plastino
et al. proved that the only requirements that a dynami-
cal system has to fulfill in order to be thermalizable by
the KBB procedure (in the context of the standard Gibbs
canonical ensemble) are to admit an integral of motion
C(x,y),

dC

dt
=

(
N1∑
i=1

ui
∂C

∂xi

)
+

⎛
⎝ N2∑

j=1

vj
∂C

∂yj

⎞
⎠ = 0 (5)

and to exhibit a divergence free phase-space flow, that is,

∇ ·w =

(
N1∑
i=1

∂ui

∂xi

)
+

⎛
⎝ N2∑

j=1

∂vj

∂yj

⎞
⎠ = 0. (6)

In [8] Plastino et al. considered a system verifying condi-
tions (5) and (6), admitting an integral of motion C(z).

Hamiltonian systems fulfill condition (6), but there are
other interesting systems within this family. Among oth-
ers, the Lotka-Volterra predator-prey systems [22,23] and
the Nambu systems [24] share the vanishing divergence
property. The Lotka-Volterra predator-prey systems con-
stitute some of the most important dynamical systems
considered in theoretical biology [22]. Nambu systems
have been the focus of a considerable research activity
(see [25–33] and reference therein). The Nambu dynami-
cal structures arise in a natural way in several contexts.
For instance, Nambu dynamics has been applied to the rel-
ativistic dynamics of charged spinning particles [31], and
to some hydrodynamical type systems [32].

Now we are going to propose a thermostatting scheme
to dynamically simulate a statistical ensemble described
by a phase-space probability distribution of the form

g

[
γ +

C(x,y)
T

]
. (7)

These ensembles arise naturally from the maximum en-
tropy principle when general entropic measures are con-
sidered [12]. The extremalization of an entropic measure
under the constraints imposed by normalization and the
mean value 〈C〉 of the integral of motion C leads to prob-
ability distributions of the form (7). The quantities γ and
(1/T ) are, respectively, the Lagrange multipliers associ-
ated with the normalization and 〈C〉 constraints. Here C
plays the same role played by the energy in the standard
Gibbs ensemble (and T , of course, plays the role of the
temperature). Even if C is a constant of motion, it is some-
times useful to consider statistical ensembles like equa-
tion (7), where phase space points with different values
of C have finite values of the probability density g(x,y)
(for an example in theoretical biology, see [22]). The sys-
tem under consideration is usually not completely isolated:
it is weakly interacting with another system playing the
role of a “C-bath” (again, this situation is similar to the
one associated with the standard Gibbs ensemble). Even
for an isolated system, according to Jaynes’ information
theory approach to statistical mechanics [34–37], a maxi-
mum entropy statistical ensemble provides an appropriate
description. If the only available information about the
system is the mean value of C, it is reasonable to adopt
a maximum entropy phase space probability distribution
like equation (7). In point of fact, these kind of distribu-
tions, for various entropic measures, are widely used in the
literature to describe diverse systems in physics, biology,
and other fields [19,20].

Let us now consider the (extended) dynamical equa-
tions for the original system coupled with the bath (which
are a set of N + 2 coupled differential equations). For the
equations of motion of the system’s phase space coordi-
nates we propose,

dxi

dt
= ui − h2(ε) Fi(x,y), (i = 1, ....N1)

dyj

dt
= vj − h1(η) Gj(x,y), (j = 1, ....N2), (8)
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and for the equations of motion of the bath variables we
propose,

dε

dt
= −β

{[
g′
(
γ + C

T

)
g
(
γ + C

T

)
]

N1∑
i=1

Fi
∂C

∂xi
+ T

N1∑
i=1

∂Fi

∂xi

}

dη

dt
=−α

⎧⎨
⎩
[

g′
(
γ + C

T

)
g
(
γ + C

T

)
]

N2∑
j=1

Gj
∂C

∂yj
+T

N2∑
j=1

∂Gj

∂yj

⎫⎬
⎭ . (9)

The present developments formally hold for arbitrary
forms of the functions Fi and Gj . The specific forms of
Fi and Gj to be used in each case, in order to make the
extended system ergodic, depend on the particular dy-
namical system under consideration. Specific examples are
given in Section 5.

It is possible to prove, after some algebra, that the
Liouville equation governing the evolution of the (ex-
tended) phase-space probability distribution F (x,y, ε, η),

∂F

∂t
+

[
N1∑
i=1

∂(ẋiF )
∂xi

]
+

⎡
⎣ N2∑

j=1

∂(ẏjF )
∂yj

⎤
⎦

+
∂(ε̇F )

∂ε
+

∂(η̇F )
∂η

= 0, (10)

admits a stationary solution of the form

F (x,y, ε, η) = g

[
γ +

C(x,y)
T

]

× exp
{
− 1

T

[
1
α

g1(η) +
1
β

g2(ε)
]}

, (11)

where the functions g1,2 and h1,2 are related by

h1(η) =
dg1

dη
,

h2(ε) =
dg2

dε
. (12)

When verifying that the probability distribution (11) is a
solution to equation (10), notice that

∂η̇

∂η
= 0 and

∂ε̇

∂ε
= 0, (13)

and also(
N1∑
i=1

∂ui

∂xi

)
+

⎛
⎝ N2∑

j=1

∂vj

∂yj

⎞
⎠

− 1
T

(
N1∑
i=1

ui
∂C

∂xi

)
− 1

T

⎛
⎝ N2∑

j=1

vj
∂C

∂yj

⎞
⎠ = 0. (14)

As we shall presently see, it is sometimes convenient to
re-write the equations of motion (8) and (9) in the form,

dxi

dt
= ui − h2(ε)k

[
γ +

C

T

]
Fi(x,y), (i = 1, ....N1)

dyj

dt
= vj − h1(η)k

[
γ +

C

T

]
Gj(x,y), (j = 1, ....N2),

(15)

and

dε

dt
= −β

{[
k′
(

γ +
C

T

)
+ k

(
γ +

C

T

)
g′
(
γ + C

T

)
g
(
γ + C

T

)
]

×
N1∑
i=1

Fi
∂C

∂xi
+ Tk

(
γ +

C

T

) N1∑
i=1

∂Fi

∂xi

}

dη

dt
= −α

{[
k′
(

γ +
C

T

)
+ k

(
γ +

C

T

)
g′
(
γ + C

T

)
g
(
γ + C

T

)
]

×
N2∑
j=1

Gj
∂C

∂yj
+ Tk

(
γ +

C

T

) N2∑
j=1

∂Gj

∂yj

⎫⎬
⎭ . (16)

where k
[
γ + C(x,y)

T

]
(as well as g

[
γ + C(x,y)

T

]
) is a

general function of the argument [γ + C(x,y)
T ]. Notice

that the equations (15–16) are equivalent to the equa-
tions (8–9). The transformation from equations (8–9) to
equations (15–16) only involves a redefinition of the func-
tions Fi and Gj ,

Fi(x,y) → k

[
γ +

C

T

]
Fi(x,y),

Gj(x,y) → k

[
γ +

C

T

]
Gj(x,y). (17)

The equations of motion (8, 9) of the extended system
do not exhibit, in general, a Hamiltonian form (not even
the equations of motion (4) of the original system were
assumed to have a Hamiltonian form). However, any dy-
namical system can be cast into a Hamiltonian form by
appropriately enlarging the phase space (see, for exam-
ple, [38,39]). Consequently, it is in principle possible to
perform a further extension of the phase space in order
to endow the equations of motion of the extended sys-
tem with a Hamiltonian structure. This would allow for
the exploration of possible connections of the present for-
malism with other, Hamiltonian-based thermostatting ap-
proaches, like the Poincare-Nosé scheme [40]. However, the
alluded extension of the phase space seems (at least in the
context of the present formalism) a rather artificial proce-
dure. In point of fact, one of the aims of the present article
is to show that the equations of motion of a system do
not need a Hamiltonian structure in order to implement a
KBB-like thermostatting scheme to simulate general sta-
tistical ensembles.

3 Hamiltonian systems and Gibbs canonical
ensemble

The equations of motion originally proposed by KBB
were intended to simulate Gibbs’ canonical ensemble for
Hamiltonian systems. Those equations of motion are a
particular instance of our general equations. For a Hamil-
tonian system with n degrees of freedom we have N = 2n,
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N1 = N2 = n, and yi = pi, (i = 1, . . . n). Furthermore, we
have,

ui = ∂H/∂pi

vi = −∂H/∂xi, (i = 1, . . . n). (18)

The integral of motion C(x,y) of the system is the Hamil-
tonian H . If we now set

g

[
γ +

H

T

]
= exp

[
−γ − H

T

]
, (19)

and

k

[
γ +

C(x,y)
T

]
= 1, (20)

it can be verified that the general thermostatting equa-
tions reduce to the KBB ones,

dxi

dt
=

∂H

∂pi
− h2(ε)Fi(x,p), (i = 1, ....N)

dpi

dt
=

∂H

∂xi
− h1(η)Gi(x,p), (i = 1, ....N) (21)

dε

dt
= β

N∑
i=1

(
Fi

∂H

∂xi
− T

∂Fi

∂xi

)

dη

dt
= α

N∑
i=1

(
Gi

∂H

∂pi
− T

∂Gi

∂pi

)
. (22)

The Liouville equation associated with the extended dy-
namical system admits as stationary solution the proba-
bility distribution

F (x,p, ε, η) =
1
Z

× exp
{
− 1

T

[
H(x,p) +

1
α

g1(η) +
1
β

g2(ε)
]}

, (23)

where
1
Z

= exp[−γ]. (24)

is an appropriate normalization factor.

4 Nonextensive canonical ensembles
of general dynamical systems with vanishing
divergence

There are many systems in nature that are described
by power-law like distributions [19,20]. In many situa-
tions, these distributions are conveniently parameterized
in terms of q-maximum entropy distributions maximizing
Tsallis q-entropy [10],

Sq =
1

q − 1

∫
(f(z) − [f(z)]q)dz, (25)

where the entropic index q is any real number and f(z)
is a probability distribution in the relevant phase space,
fulfilling the normalization condition,∫

f(z) dz = 1. (26)

The generalized entropy Sq is nonextensive such that

Sq(A + B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (27)

where A and B are two systems statistically independent
in the sense that

f (A+B)(z, z′) = f (A)(z) f (B)(z′). (28)

We can construct a MaxEnt distribution fME
q that max-

imizes the entropy functional (25), subject to the con-
straints imposed by the mean value of the energy plus the
normalization prescription (26). The solution of this varia-
tional problem is given by the Tsallis MaxEnt probability
distribution [41]. When the only relevant information is
provided by the generalized mean value of an integration
constant C, the corresponding MaxEnt probability distri-
bution reads

fME
q (z) =

1
Zq

[
1 − 1 − q

T
C(z)

] 1
(1−q)

(29)

where Zq is the generalized partition function

Zq =
∫ [

1 − 1 − q

T
C(z)

] 1
(1−q)

dz. (30)

When the parameter q in the previous equations is such
that q < 1, the concomitant probability distribution f
vanishes if

C(z) > Cc =
T

1 − q
. (31)

Equation (31) constitutes the Tsallis’ cut-off condition,
which constitutes an important feature of Tsallis’ distri-
butions. As a result of this condition we have that an orbit
of a “thermalized” system cannot cross the hypersurface
Σc defined by C(z) = Cc. In other words, if the system is
initially inside Σc, it will remain there forever. This kind of
behavior of the thermalized system can be obtained by re-
course to an appropriate choice for the function k

(
γ + C

T

)
.

The function g
(
γ + C

T

)
associated with the non-

extensive canonical ensemble is

g

(
γ +

C

T

)
=
[
1 − 1 − q

T
C(x,y)

] 1
(1−q)

, (32)

and for the function k
(
γ + C

T

)
we adopt

k

(
γ +

C

T

)
= 1 − 1 − q

T
C(x,y). (33)

This form of k leads to a thermalizing dynamics in accord
with Tsallis’ cut-off prescription. The corresponding cou-
pling with the heat bath is then described by the equations
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of motion

dxi

dt
= ui − h2(ε)

[
1 − 1 − q

T
C

]
Fi(x,y), (i = 1, ....N1)

dyj

dt
= vj − h1(η)

[
1 − 1 − q

T
C

]
Gj(x,y), (j = 1, ....N2).

(34)

The equations of motion for the heat bath variables are,

dε

dt
= β

{
(2 − q)

∑
Fi

∂C

∂xi
− T

[
1 − 1 − q

T
C

]∑ ∂Fi

∂xi

}
dη

dt
= α

{
(2 − q)

∑
Gj

∂C

∂yj
− T

[
1 − 1 − q

T
C

]∑ ∂Gj

∂yj

}
.

(35)

Thus we have the full set of N + 2 differential equations
for the extended system (Eqs. (34) and (35)). In this case
the Liouville equation of the extended system admits a
stationary solution of the form,

F (x,y, ε, η) =
1
Zq

[
1 − 1 − q

T
C(x,y)

] 1
(1−q)

× exp
{
− 1

T

[
1
α

g1(η) +
1
β

g2(ε)
]}

. (36)

The form of the equations (34) depends on parameter q. If
we take q → 1 we recover the KBB equations of motions
derived in [8] for canonical ensembles distributions.

Due to the form (33) for the function k, it follows from
the equations of motion (34) that

dnC

dtn
= 0, n = 1, 2, 3 . . . , (37)

for states of the system belonging to the hyper-surface Σc

associated with Tsallis’ cut-off. Consequently, the hyper-
surface Σc constitutes an invariant set of the thermal-
ized dynamics. That is, if the initial conditions are such
that the system is within Σc the system stays in Σc for-
ever. Moreover, the system’s orbit cannot cross the hyper-
surface Σc. Another convenient choice for the function k
(instead of Eq. (33)) is

k

(
γ +

C

T

)
=
[
1 − 1 − q

T
C(x,y)

]f

(38)

where f is a real number. For f = 1 we recover equa-
tion (33).

5 Numerical illustrations

In this section we illustrate the dynamical thermostatting
of a system of vanishing divergence for the case of nonex-
tensive canonical ensembles. We work in a Mathematica
environment (Wolfram Research), Version 4 [42]. In or-
der to find the numerical solutions to the set of differen-
tial equations we use the function NDSolve. This function

is based on the LSODE (Livermore Solver for Ordinary
Differential Equations) which switches between a nonstiff
Adams method and a stiff Gear method [42].

First we consider a biological example given by the
Lotka-Volterra differential equations describing predator-
prey interactions. We apply equations (34) and (35) to a
Lotka-Volterra model with three species described by the
following set of coupled, ordinary differential equations

dz1

dt
= ez2 + 3ez3 − 4,

dz2

dt
= −ez1 + 2ez3 − 1,

dz3

dt
= −3ez1 − 2ez2 + 5, (39)

where the variables zi are given in terms of the populations
Ni (i = 1, 2, 3) of the three species by the following relation

zi = ln
(

Ni

Ni0

)
, (40)

where Ni0 denotes the stationary values of those popu-
lations [22,23]. This system has a divergence free phase
space flux,

3∑
i=1

∂

∂zi

(
dzi

dt

)
= 0, (41)

and admits the integral of motion

C(z1, z2, z3) =
3∑

i=1

[ezi − zi] . (42)

We consider a thermalization scheme characterized by the
functions

F1 = z1

G2 = z3
2

G3 = z3
3

h2(ε) = ε

h1(η) = η. (43)

We use the k-function given by equation (33). We chose
the parameter values T = 4 and α = β = 1. the marginal
ensemble probability distribution associated with one dy-
namical variable zi is given by

P (zi) =
∫

F (z, ε, η) dΩ′, (44)

where the complete stationary solution F (z, ε, η)
(Eq. (36)) of the extended dynamical system’s Liouville
equation is integrated over all the dynamical variables
with the exception of zi. In Figure 1 we compare the
marginal ensemble probability distribution P (zi) and the
corresponding histogram obtained from a numerically
computed orbit of the associated extended, thermalized
system. The initial conditions used to generate the orbit
of the extended dynamical system are z1(0) = 0.04,
z2(0) = −1.34, z3(0) = 0.011, ε(0) = 0, and η(0) = 0.5.
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-6 -4 -2 0 2 4
z1

0

0.1

0.2

0.3

P
 [

z1
]

Fig. 1. The marginal ensemble distribution (dashed line) and
the numerical histograms (solid line) for the variable z1 of the
Lotke-Volterra system (39) with q = 0.5 are plotted. All the
depicted quantities are dimensionless.

-4 -3 -2 -1 0 1 2
z1

0

0.1

0.2

0.3

0.4

0.5

P
 [

z1
]

Fig. 2. The marginal ensemble distribution (dashed line) and
the numerically computed histograms with f = 1 (dotted line)
and with f = 0.2 (solid line) are plotted for the phase space
coordinate z1 of the Lotka-Volterra system (39) with q = 0.3.
All the depicted quantities are dimensionless.

The time step is 0.0067 = 5/750. The total sampling time
is 10000. The histogram bin size is 0.15.

The three variables have all the same ensemble distri-
bution. We can see from this figure that the histograms
calculated following the Dynamical Thermostatting pro-
cedure for general divergence free dynamical systems ac-
curately fit the corresponding ensemble distribution. We
also considered the more general k-function given by equa-
tion (38). We found that the convergence of the method
is improved if values 0 < f < 1 are adopted for the expo-
nent f appearing in k. In Figure 2, the marginal ensemble
distribution (dashed line) for z1 is compared with the nu-
merically obtained distributions associated with f = 1
(dotted line) and with f = 0.2 (solid line). The initial
conditions used in Figure 2 are the same as the ones used
in Figure 1. The time step is 0.0033 = 5/1500. The total
sampling time is 5000. The histogram bin size is 0.15.

It transpires from Figure 2 that the histogram corre-
sponding to f = 0.2 constitutes a better approximation

-2 -1 0 1 2
x1

0

0.1

0.2

0.3

0.4

0.5

P
[x

1]

Fig. 3. The marginal ensemble distribution (dashed line) and
the numerically computed histograms (solid line) for the dy-
namical variable x1 of a Nambu system (Eq. (45)) with q = 0.5
are plotted. All the depicted quantities are dimensionless.

-3 -2 -1 0 1 2 3
x2

0

0.1

0.2

0.3

0.4

P
[x

2]

Fig. 4. The marginal ensemble distribution (dashed line) and
the numerically computed histograms (solid line) for the dy-
namical variable x2 of a Nambu system (Eq. (45)) with q = 0.5
are plotted. All the depicted quantities are dimensionless.

to the marginal ensemble distribution than the histogram
computed with f = 1.

We have also applied the thermalizing procedure to a
three dimensional Nambu system [24], obtaining numeri-
cal results that fit very well with the corresponding ensem-
ble distributions (see Figs. 3–5). The equations of motion
of this system read

dx
dt

= (∇G) × (∇H) (45)

where G and H are the Hamiltonians

G =
1
2
(
x2

1 + x2
2 + x2

3

)
(46)

and

H =
1
2

(
x2

1

I1
+

x2
2

I2
+

x2
3

I3

)
(47)

with I1 = 1, I2 = 2 and I3 = 3. For this example we
considered a Tsallis’ distribution with q = 0.5. The ini-
tial conditions for the extended dynamical system used in
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Fig. 5. The marginal ensemble distribution (dashed line) and
the numerically computed histograms (solid line) for the dy-
namical variable x3 of a Nambu system (Eq. (45)) with q = 0.5
are plotted. All the depicted quantities are dimensionless.

connection with Figures 3–5 are the same for the three
figures: x1(0) = 0.4, x2(0) = 0.34, x3(0) = 0.11, ε(0) = 0,
and η(0) = 0.5. The time step is 0.0167 = 1/60. The total
sampling time is 20000. The histogram bin size is 0.15.

6 Conclusions

We have shown that the Dynamical Thermostatting pro-
cedure can be successfully implemented in order to sim-
ulate general statistical ensembles of dynamical systems
with vanishing divergence admitting an integral of mo-
tion. As an illustration of the present formalism, we have
discussed in detail the case of power law-like ensembles,
and have applied it to (i) the celebrated Lotka-Volterra
equations for population dynamics and (ii) a Nambu sys-
tem.

The present results provide new evidence that the
KBB approach is a robust and versatile method for sim-
ulating statistical ensembles and for computing the con-
comitant thermodynamical properties of a wide family of
statistical ensembles and dynamical systems. Besides their
possible practical applications, the generalized versions of
the KBB approach are also of interest from a conceptual
point of view. For instance, they provide a large family of
dynamical systems leading to Tsallis’ distributions. The
study of these systems may contribute to the understand-
ing of Tsallis’ thermostatistics and its possible applica-
tions.

This work was partially supported by MEC grant BFM2002-
03241 (Spain), CONICET (Argentina), and CNPq (Brazil).
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